juliacon
2020 is going virtual in 2020
| |29-31July

Everywhere on Earth!

L2 b % | - ‘I ~ . b =
)]] 3
T L) A ann =
, [E— P& A] | i o
1] R i o TG
; J‘ =1 Plessts i) |) 1 :
1 b N — \
¥ \ Y 2 L R
1 = | — P’ i 5 |
) i AR - g v
i 1 ZaN \ 1| 7 A is=1 = aa i
i | o= ' Ay =
| R N, A == ¢ 4
——n" i == ' T —5 \a/ 1 LR
k= [N g =
4 AIARRE p- N |
4 i TS NS

TECHNIQUES FOR ENC
Gajendra Deshpande

KLS Gogte Institute of Technology, India

_ https: / /github.com /gcdeshpande

Contents

0 Homomorphic Encryption

O Properties of Homomorphic Encryption

0 Summary of Homomorphic Properties

O The Example

0 Experiment with RSA Algorithm

O Results

O Machine Learning and Homomorphic Encryption
O Conclusion

Homomorphic Encryption

O Imagine taking all of your credit card statements and locking them
into a safe, to which you have the only key. Your statements are now
protected from prying eyes. This is what encryption does.

o But what if you wanted to analyse your expenditure on groceries in
the last 12 months? First you would have to unlock the safe and
retrieve the statements. So now the documents are out in the open
and they can be read by anyone. This is what decryption does.

0 The difference with Homomorphic Encryption is that you can create
your report without taking the documents out of the safe.

Properties of Homomorphic Encryption

o Additive Homomorphic Encryption:

A Homomorphic encryption is additive, if

Ek (PT1E@PT2) = Ek (PT1) € Ek (PT2)

As the encryption function is additively homomorphic, the following identities can be
described:

The product of two cipher texts will decrypt to the sum of their corresponding plaintexts,
D (E (m1)-E(m2) mod n) =ml + m2 mod n.

The product of a cipher text with a plaintext raising g will decrypt to the sum of the
corresponding plaintexts,

D (E (m1) - g™ mod n2) = m1 + m2 mod n.

Properties of Homomorphic Encryption

O Multiplicative Homomorphic Encryption: Homomorphic encryption is
multiplicative, if

Ek (PT1QPT2) = Ek (PT1) & Ek (PT2)

O The homomorphic property of the RSA.
Suppose there are two cipher texts, CT1 and CT2.
CT1 =ml¢modn

CT2 = m2° mod n

CT1 -CT2 =ml¢:m2° modn

So, multiplicative property: (m1 - m2) © mod n

Summary of Homomorphic Properties

m Multlpllcahve Applications

To secure Internet Banking and credit card
transactions

Paillier Yes No E-voting system

EIGamal No. Yes In Hybrid Systems

The Example

Plain Text P1 Plain Text P2] P ‘I — 5; P 2 — ‘I O

Encrypt Encrypt

Encryptell Text EP1 Encrypted Text EP2] E P] — 5 O E P 2 —] O O
Addition/Multiplication 00 EResult1=50+100=150;

EResult=EP1+EP2

EResult=EP1*EP2 Eresult2=50*100=5000

Decrypt

Decrypted Result DResult] DReSUIII'.I —] 5 ;
DResult2=50

DResult = P1+P2
DResult=P1*P2

Experiment with RSA Algorithm

Selecting two large primes at random: p, g
Computing their system modulus n=p.q

Note &(n)=(p-1)(q-1)

O O 0O O

Selecting at random the encryption key e where 1<e<g(n),
ged(e,(n))=1

Solve following equation to find decryption key d
e.d=1 mod @(n) and 0<d<n

Publish their public encryption key: pu={e,n}

O O 0O O

Keep secret private decryption key: pr={d,n}

Experiment with RSA Algorithm

0 To encrypt a message M the sender:
obtains public key of recipient pu={e,n}
computes: C = m® mod n, where O0<m<n
0 To decrypt the ciphertext C the owner:
uses their private key pr={d,n}

computes: M = ¢c® mod n

Experiment with RSA Algorithm

Grade School Method Karatsuba Method Fast Fourier Transform

O(n’) O(n *#%) =O(n'->*) ©(n log(n) log(log(n)))

0 The multiplication algorithms were implemented in two steps

0 Multiplication algorithms in RSA algorithm were replaced
by Karatsuba and FFT methods one after another.

0 Multiplication operations were performed on encrypted
numbers by Karatsuba and FFT Methods.

File Edit View Juno Selection Find Packages Help

dl
d

cl
ml
cl
ml

1(d1,

("Original Mes

1("Encrypted Message cl

1("Decryj i Message ml

File Edit View Juno Selection Find Packages Help

dl
d

mes:

c2
m2
c2
m2

el
(dl, phi)
ageb 3
messageb”el
c2™d
(c2, n)
(m2, n)

encprod cl c2

tln("0Original Message B , messageb)

n("Encrypted Message c2 : ", c2)
n("Decrypted Message m2 : ", 1 (m2))

n()

n("message-A * message-B = ", messagea messageb)

= ", encprod)

(d1l, phi)

encprod

println()
println("Decryption(cl * c2)
println()

gajendra@gajendra-HP-Laptop-

& Original Message A : 2

- Encrypted Message cl : 2137122
Decrypted Message ml : 2.0

= Original Message B : 3

= Encrypted Message c2 : 2051153

B Decrypted Message m2 : 3.0

7 message-A * message-B = 6

2
cl * c2 = 4383564201666

— Decryption(c1 * c2) : 6.0

round(m3))

$ julia rsa_vi.jl

0.251996 seconds (605.69 k allocations: 28.309 MiB)
(base) 3

M v

©

rsaFFT{l
FFTW
println("x=2027889 y=1774865")

mulfft()
x=19,8 8 7, 2,0, 2,00, 0,0,0, 0, 0] L,
y=156,84,7,7,1,0,0,0,0, 0 0, 0] X = 2027889
b = Fft(x) y = 1774865
q = fft(y) result = x * y
Pq = p q -
painv = ifft(pq) printin() = .
println("Multiplication (x*y) using * operator ", result)
z =[] println("Multiplication time using * operator")
i = 0:length(pginv)-1
append!(z, 107°1i)
@time mult()
suml = real(pginv) z println()
result = sum(suml) @time mulfft()

println("Multiplication (x*y) using FFT ", result)
println("Multiplication time using FFT")

gajendra@gajendra-HP-Laptop-15-da0xxx: ~/Desktop

.
N T T

X=2027889 y=1774865

Multiplication (x*y) using * operator 3599229209985
Multiplication time using * operator
0.017288 seconds (20.09 k allocations: 970.217 KiB)

Multiplication (x*y) using FFT 3.599229209985002e12
Multiplication time using FFT

0.267845 seconds (698.30 k allocations: 32.888 MiB)
(base) :

$ julia rsafFFT.jl

$ (]

Results

Comparison of Multiplication in RSA Comparison of Multiplication on
0.48 Encrypted Text
0.46 0.45
0.44
0.44 0.43
0.42 0.42
0.41
0.4 04
0.38 0.39
0.38
0.36
0.37
0.34 0.36
Encryption Decryption Dec of Enc Encryption Decryption Set Keys Encryption Decryption Dec of Enc Encryption Decryption Set Keys
Time Time Prod Product Product Time Time Time Prod Product Product Time
Time Time Time Time

B Grade School ™ Karatsuba ®FFT M Grade School M Karatsuba ™ FFT

Machine Learning and Homomorphic Encryption

O Pre-processing: Map the numbers in the dataset to random
numbers

O Encrypt the data set using cryptographic algorithms such as
RSA, paillier or any other cryptosystem

O Perform the computations on encrypted data

O Decrypt the results

O Post-processing: rounding up /down, remap random
numbers to original numbers

Conclusion

0 Homomorphic Encryption enables computation on untrusted
resource. The Computation time over cipher text can be
reduced by using Karatsuba or FFT techniques.

O Training and testing machine learning model may involve
additional steps such as pre-processing and post-
processing and results into additional computational
complexity.

Thank Youl

Widescreen Test Pattern (16:9)

Aspect Ratio Test

(Should appear
circular)

A

4x3

\ 4

16x9

