1

HEYLON Thi20

05-06 Sep, 2020 in NCKU

&

Computation techniques for encrypted data using Python
Gajendra Deshpande
KLS Gogte Institute of Technology, India
https://gcdeshpande.github.io

Contents
S

0 Homomorphic Encryption

O Properties of Homomorphic Encryption

O Summary of Homomorphic Properties

O The Example

O Experiment with RSA Algorithm

O Results

O Machine Learning and Homomorphic Encryption
O Conclusion

Homomorphic Encryption
.

o Imagine taking all of your credit card statements and locking them
into a safe, to which you have the only key. Your statements are now
protected from prying eyes. This is what encryption does.

o But what if you wanted to analyse your expenditure on groceries in
the last 12 months? First you would have to unlock the safe and
retrieve the statements. So now the documents are out in the open
and they can be read by anyone. This is what decryption does.

0 The difference with Homomorphic Encryption is that you can create
your report without taking the documents out of the safe.

Properties of Homomorphic Encryption

.,
o Additive Homomorphic Encryption:

A Homomorphic encryption is additive, if

Ek (PT1E@PT2) = Ek (PT1) € Ek (PT2)

As the encryption function is additively homomorphic, the following identities can be
described:

The product of two cipher texts will decrypt to the sum of their corresponding plaintexts,
D (E (mT1) - E(m2) mod n) = ml + m2 mod n.

The product of a cipher text with a plaintext raising g will decrypt to the sum of the
corresponding plaintexts,

D (E (m1) - g™ mod n2) = m1 + m2 mod n.

Properties of Homomorphic Encryption
I

O Multiplicative Homomorphic Encryption: Homomorphic encryption is
multiplicative, if

Ek (PT1QPT2) = Ek (PT1) & Ek (PT2)

O The homomorphic property of the RSA.
Suppose there are two cipher texts, CT1 and CT2.
CT1 =ml¢modn

CT2 = m2° mod n

CT1 - CT2 =ml°¢:-m2° modn

So, multiplicative property: (m1 - m2) © mod n

Summary of Homomorphic Properties

m Multlpllcqhve Applications

To secure Internet Banking and credit card
transactions

Paillier Yes No E-voting system

EIGamal No. Yes In Hybrid Systems

The Example

Plain Text P1 Plain Text P2

Encrypt

Encrypt

Encrypted Text EP1 Encrypted

Text EP2

Addition/Multiplication
EResult=EP1+EP2
EResult=EP1*EP2

Decrypt

Decrypted Result DResult

DResult = P1+P2
DResult=P1*P2

0 P1=5; P2=10
1 EP1=50 EP2=100

0 EResult1=50+100=150;
Eresult2=50*100=5000

0 DResult1=15;
DResult2=50

Experiment with RSA Algorithm
-5
Selecting two large primes at random: p, g

Computing their system modulus n=p.q
Note g(n)=(p-1)(g-1)

Selecting at random the encryption key e where 1<e<g(n),
ged(e,(n))=1

O O 0O O

Solve following equation to find decryption key d
e.d=1 mod @(n) and 0<d<n

Publish their public encryption key: pu={e,n}

O O 0O O

Keep secret private decryption key: pr={d,n}

Experiment with RSA Algorithm

0 To encrypt a message M the sender:
obtains public key of recipient pu={e,n}
computes: C = m® mod n, where 0<m<n
0 To decrypt the ciphertext C the owner:
uses their private key pr={d,n}

computes: M = ¢® mod n

Experiment with RSA Algorithm

Grade School Method Karatsuba Method Fast Fourier Transform

O(n’) O(n *#%) =O(n'->*) ©(n log(n) log(log(n)))

0 The multiplication algorithms were implemented in two steps

0 Multiplication algorithms in RSA algorithm were replaced
by Karatsuba and FFT methods one after another.

0 Multiplication operations were performed on encrypted
numbers by Karatsuba and FFT Methods.

Acthitles T Terminal =

‘BoPPORS

[East)
First 1ist of random numbers

[22]

second List of random numbers
[87]

8.4Z153787E129

B8.39126518 7559

0. 30023096159

B.3E955497 7417

8.3E%754870511

0. 385742851257

("N ="', 3125743, "\ne = ", 5)

Encryption of Flrst 1ist of Random nurbers
[2Bz2Ta49]

Encryption of Second 1ist of Random Mumbers
[1774855]

pecryption of First 1ist of Randon Mumbers
[22]

Decryption of Second 1ist of Random Mumbers
[&87]

Product of Tws Encrypted Lists
[[3559220760085] |

Product of Twe Decrypted Lists
[[1914]]

Decryption of Product of Encrypted Lists

[194L]

Moy 2 019 &

gagendra@gajendra-HP-Laptog- 15-dalon: -/ Deskbogp scipy 2008/ 5cipy

% pythonZ rsakar.py

Results-High Resource
-5

Comparison of Multiplication in RSA Comparison of Multiplication on
0.48 Encrypted Text
0.46 0.45
0.44
0.44 0.43
0.42 0.42
0.41
0.4 04
0.38 0.39
0.38
0.36
0.37
0.34 0.36
Encryption Decryption Dec of Enc Encryption Decryption Set Keys Encryption Decryption Dec of Enc Encryption Decryption Set Keys
Time Time Prod Product Product Time Time Time Prod Product Product Time
Time Time Time Time

B Grade School ™ Karatsuba ®FFT M Grade School M Karatsuba ™ FFT

Results-Low Resource
I

Comparison of Multiplication in RSA Comparison of Multiplication on
12 Encrypted Text
1.4
1
1.2
0.8 1
0.6 0.8
0.6
0.4
0.4
0.2 02
0 0
Encryption Decryption Dec of Enc Encryption Decryption Set Keys Encryption Decryption Dec of Enc Encryption Decryption Set Keys
Time Time Prod Product Product Time Time Time Prod Product Product Time
Time Time Time Time

B Grade School M Karatsuba ®FFT B Grade School ™ Karatsuba ™ FFT

Machine Learning and Homomorphic Encryption
7 -~

[

Pre-processing: Map the numbers in the dataset to
random numbers

Encrypt the data set using cryptographic algorithms such
as RSA, paillier or any other cryptosystem

Perform the computations on encrypted data
Decrypt the results

Post-processing: rounding up/down, remap random
numbers to original numbers

Actiities T Terminal = Moy 2 13584

"y (] gajeridra@najendra-HP-Lapbop-15-dalxxs: - pybrainfexamples foupervised Bbackprop fdatasets | B
#!/usr/bin/env python

& _ author__ = 'Tom Schaul, tom@idsia.ch'

. from pybrain.datasets import SupervisedDataSet, ImportanceDataSet

©

class XORDataSet(SupervisedDataSet):
"t oA dataset for the XOR function."""
A def __init_ (self):
~ SupervisedDataSet. 1init_ (self, 2, 1)
- self.addSample([0,8],[0])
self.addSample([®,1],[1])
ﬂ self.addSample([1,8],[1])
. self.addSample([1,1],[0])

class SequentialXORDataSet(ImportanceDataSet):
""" game thing, but sequential, and having no importance on a second output
def __init__ (self):
ImportanceDataSet.__init__ (self, 2, 2)
self.addSample([0@,0],[0, 1], [1,0
self.addSample([@,1],[1, 10], [1,0
self.addSample([1,0],[1, -1], [1,0
L self.addSample([1,1],[0, 0], [1,0

31 "xorco.py" 24 lines, 801 characters

Actiities =) Terminal = Moy 2 14058 i

oy

‘.) (] gajendraf@gajendra-HP-Laptop-15-dabx: -/Deskbop fucipy 2015 e = = £

gajerdradicajendra-HP-Lapbop-1 S-datos - Deskeapyscipy 2000 o

L
. {base) 3 % pvthon rsaz.py

@ 1. Set Public Key
2. Encode
% 3. Decode
0. Quit
—= Your choice? 1
‘iﬂp: 17
= qQ: 19
M 323

e 5

>

. Set Public Key
. Encode
. Decode
. Quit

Your choice? 2
Number to encode: 1@
193
Number to encode: 28
39
Number

e I Y N Ty

to encode:

1. Set Public Key
2. Encode
3. Decode
0. Quit
ves Your choice? @
iii (base)

Actiities) Terminal = How2 13384

"y (] gajeridra@najendra-HP-Lapbop-15-dalxxs: - pybrainfexamples foupervised Bbackprop fdatasets | = =
#!/usr/bin/env python
& _ author__ = 'Tom Schaul, tom@idsia.ch'

. from pybrain.datasets import SupervisedDataSet, ImportanceDataSet

©

% class XORDataSet(SupervisedDataSet):
"t oA dataset for the XOR function."""

A def __init_ (self):

~ SupervisedDataSet. 1init_ (self, 2, 1)

- self.addSample([193,193],[193])
self.addSample([193,39],[39])

ﬂ self.addSample([39,193],[39])

o self.addSample([39,39],[193])

class SequentialXORDataSet(ImportanceDataSet):
""" came thing, but sequential, and having no importance on a second output
def __init__ (self):
ImportanceDataSet.__init__ (self, 2, 2)
self.addSample([@,0],[0, 1], [1,0])
self.addSample([0,1],[1, 10], [1,0])
self.addSample([1,0],[1, -1], [1,0])
U self.addSample([1,1],[@, @], [1,9])

Actiities) Terminal = How2 1401 LA |

"y najendrafgsjendra-HP-Laptop-15-deduss: —pybrainfexamples fsupervsed ‘backprop | B £

- ! fusr/bin/env python
&§ # A simple feedforward neural network that learns XOR.

. __author__ = 'Tom Schaul, tom@idsia.ch'

@ from datasets import XORDataSet #@UnresolvedImport
% from pybrain.tools.shortcuts import buildNetwork
from pybrain.supervised import BackpropTrainer

A

W def testTraining():
%ORDataSet()

ﬂ buildnetwork(d.indim, 4, d.outdim, recurrent=True)

= BackpropTrainer(n, learningrate = 0.01, momentum = 0.99, verbose = True)

.trainOnDataset(d, 1000)

.testOnData(verbose= True)

+ r+ + 2

if _name__ == "'__main__"':
|| testTraining()

"hexor.py" 20 lines, 559 characters

Actheities T Terminal = Mow2 13524

"y (] najendrafgajendra-HP-Laptop-15-deduxs: —/pvbrainfexamples/fsupervsed fbackprop
-

_ Total error: 2182.41045911
& Total error: 2119.30936398

Testing on data:
@ (out: ', '[156.163]")
('correct:', '[193]1')
_error: 678.49269375
& ('out: ', '[156.163]")
;('currect:', '[39 1")
error: 6863.55117722
B (ouvt: ', '[52.638]")
- ('correct:', '[39 1)
error: 92.99464931
('out: ", '[156.163]")
('correct:', '[193]')
error: 678.49269375
("All errors:', [678.4926937498457, 6863.551177222227, 92.99464931148584, 678.49269
37498603])
('Average error:', 2078.3828035083548)
(base)
(base)
S

Conclusion
I

0 Homomorphic Encryption enables computation on untrusted
resource. The Computation time over cipher text can be
reduced by using Karatsuba or FFT techniques.

O Training and testing machine learning model may involve
additional steps such as pre-processing and post-processing
and results into additional computational complexity.

