
IMPLEMENTATION OF MULTI

AGENT SYSTEM FOR

COMPUTATION OVER CIPHER

TEXT FOR INTERNET OF THINGS

Gajendra Deshpande, KLS GIT, BelagaviScipy 2018

Contents

 Homomorphic Encryption

 Properties of Homomorphic
Encryption

 Summary of Homomorphic Properties

 Vertically-Crosswise Multiplication

 Vedic-py package

 osBrain Package

 SPADE Package

 Implementation

 Output

 Conclusion

Homomorphic Encryption

 Several billion devices are currently connected to the Internet, and this
number will continue to grow.

 This is a consequence of not only more people becoming interested in
consumer electronics but also more sensors and actuators being incorporated
into everyday electronics, household appliances, and the general
infrastructure.

 Since most of these devices are not able to process data locally, they will
often upload it to a third party for processing.

 However, this data may be private, the third party may not be trustworthy,
or both. Therefore, the data should be encrypted before it is transferred

Homomorphic Encryption

 Imagine taking all of your credit card statements and locking them
into a safe, to which you have the only key. Your statements are now
protected from prying eyes. This is what encryption does.

 But what if you wanted to analyse your expenditure on groceries in
the last 12 months? First you would have to unlock the safe and
retrieve the statements. So now the documents are out in the open
and they can be read by anyone. This is what decryption does.

 The difference with Homomorphic Encryption is that you can create
your report without taking the documents out of the safe.

Properties of Homomorphic Encryption

 Additive Homomorphic Encryption:

A Homomorphic encryption is additive, if

Ek (PT1⊕PT2) = Ek (PT1) ⊕ Ek (PT2)

As the encryption function is additively homomorphic, the following identities can be

described:

The product of two cipher texts will decrypt to the sum of their corresponding plaintexts,

D (E (m1) ∙ E (m2) mod n) = m1 + m2 mod n.

The product of a cipher text with a plaintext raising g will decrypt to the sum of the

corresponding plaintexts,

D (E (m1) ∙ gm2 mod n2) = m1 + m2 mod n.

Properties of Homomorphic Encryption

 Multiplicative Homomorphic Encryption: Homomorphic encryption is
multiplicative, if

Ek (PT1⊗PT2) = Ek (PT1) ⊗ Ek (PT2)

 The homomorphic property of the RSA.

Suppose there are two cipher texts, CT1 and CT2.

CT1 = m1e mod n

CT2 = m2e mod n

CT1 ∙ CT2 = m1e ∙ m2e mod n

So, multiplicative property: (m1 ∙ m2) e mod n

Summary of Homomorphic Properties

Algorithm Additive Multiplicative Applications

RSA No. Yes To secure Internet Banking and credit card

transactions

Paillier Yes No E-voting system

ElGamal No. Yes In Hybrid Systems

Vertically-Crosswise Multiplication

Vertically-Crosswise Multiplication

Ones place:

3×8=24; write down 4, remember 2. [4]

Tens place:

2 + 3×7 + 2×8 = 39; write down 9, remember 3. [94]

Hundreds place:

3+3×9+2×7+4×8=76; write down, 6, remember 7.

[694]

Thousands:

7+2×9+4×7=53; write down 3, remember 5. [3694]

Ten-thousands: 5+4×9=41; write down 41. [413694]

vedic-py package

 Python library for Vedic Maths sutras. This library implements the
vedic maths sutras for performing basic mathematical operations
like addition, subtraction, multiplication, square roots, cube roots
etc.

 Since vedic maths sutras work on individual digits in a number as
opposed to the whole number, they can treat numbers as strings
and hence not run into issues with storage and computations on
very large numbers.

 URL:https://github.com/techmoksha/vedic-py

https://github.com/techmoksha/vedic-py

vedic-py package

 Two vedic numbers can be multiplied using the * operator of

python. The multiplication is performed using Vertical-

Crosswise sutra of vedic maths

from vedic import VedicNumber

print(VedicNumber(45) * VedicNumber(57))

osBrain package

 osBrain is a general-purpose multi-agent system module written in Python and
developed by OpenSistemas. Agents run independently as system processes
and communicate with each other using message passing.

 In general, osBrain can be used whenever a multi-agent system architecture fits
the application well:

 Autonomy of the agents.

 Local views.

 Decentralization.

 URL: https://github.com/opensistemas-hub/osbrain

 Installation: pip install osbrain

https://github.com/opensistemas-hub/osbrain

osBrain package

SPADE package

 Smart Python Agent Development Environment

 A multi-agent systems platform written in Python and based on
instant messaging (XMPP).

 Develop agents that can chat both with other agents and humans.

 Agent model based on behaviours

 Tutorial: https://spade-mas.readthedocs.io/en/latest/readme.html

 Source: https://github.com/javipalanca/spade/

 Installation: pip install spade

https://spade-mas.readthedocs.io/en/latest/readme.html
https://github.com/javipalanca/spade/

SPADE package

Implementation

 Choose two plain texts P1 and P2

 Implement RSA Algorithm to convert P1 and P2 to cipher texts C1 and C2
respectively.

 Multiply plain texts i.e., Product=P1*P2

 Multiply both Cipher texts using * operator i.e., CProduct=C1*C2. Note
Computation Time: 16.4404850006 Seconds

 Multiple both Cipher texts using vertically-crosswise technique i.e.,
Vproduct=C1*C2. Note Computation Time 15.4647901058 Seconds

 Verify that Product=Dec(CProduct) and Product=Dec(VProduct)

Output

Output

Conclusion

 Homomorphic Encryption enables computation on untrusted

resource. The Computation time over cipher text can be

reduced by using vertically-crosswise technique.

 Need to test the computation time with respect to

homomorphic properties of Elgamal, Paillier and ECC

Systems.

 Multi agent system can be used for load balancing

Widescreen Test Pattern (16:9)

Aspect Ratio Test

(Should appear

circular)

16x9

4x3

