IMPLEMENTATION OF MULTI
AGENT SYSTEM FOR
COMPUTATION OVER CIPHER
TEXT FOR INTERNET OF THINGS

Scipy 2018 IGdiendrq Deshpande, KLS GIT, Belagavi

Contents
S

O Homomorphic Encryption

Properties of Homomorphic
Encryption

Summary of Homomorphic Properties
Vertically-Crosswise Multiplication
Vedic-py package

osBrain Package

SPADE Package

Implementation

Output

Conclusion

Homomorphic Encryption
.

Several billion devices are currently connected to the Internet, and this
number will continue to grow.

This is a consequence of not only more people becoming interested in
consumer electronics but also more sensors and actuators being incorporated
into everyday electronics, household appliances, and the general
infrastructure.

Since most of these devices are not able to process data locally, they will
often upload it to a third party for processing.

However, this data may be private, the third party may not be trustworthy,
or both. Therefore, the data should be encrypted before it is transferred

Homomorphic Encryption
.

o Imagine taking all of your credit card statements and locking them
into a safe, to which you have the only key. Your statements are now
protected from prying eyes. This is what encryption does.

o But what if you wanted to analyse your expenditure on groceries in
the last 12 months? First you would have to unlock the safe and
retrieve the statements. So now the documents are out in the open
and they can be read by anyone. This is what decryption does.

0 The difference with Homomorphic Encryption is that you can create
your report without taking the documents out of the safe.

Properties of Homomorphic Encryption

.,
o Additive Homomorphic Encryption:

A Homomorphic encryption is additive, if

Ek (PT1E@PT2) = Ek (PT1) € Ek (PT2)

As the encryption function is additively homomorphic, the following identities can be
described:

The product of two cipher texts will decrypt to the sum of their corresponding plaintexts,
D (E (mT1) - E(m2) mod n) = ml + m2 mod n.

The product of a cipher text with a plaintext raising g will decrypt to the sum of the
corresponding plaintexts,

D (E (m1) - g™ mod n2) = m1 + m2 mod n.

Properties of Homomorphic Encryption
I

O Multiplicative Homomorphic Encryption: Homomorphic encryption is
multiplicative, if

Ek (PT1QPT2) = Ek (PT1) & Ek (PT2)

O The homomorphic property of the RSA.
Suppose there are two cipher texts, CT1 and CT2.
CT1 =ml¢modn

CT2 = m2° mod n

CT1 - CT2 =ml°¢:-m2° modn

So, multiplicative property: (m1 - m2) © mod n

Summary of Homomorphic Properties

m Multlpllcqhve Applications

To secure Internet Banking and credit card
transactions

Paillier Yes No E-voting system

EIGamal No. Yes In Hybrid Systems

Vertically-Crosswise Multiplication

u

L

2 by 2 digits, verticals in ones
blue and cross in purple

tens hundreds

au | av+bu | bv

~J

O e OO

7 8
3 6

|‘H'EHTIEAL | CROSS | VERTICAL

Vertically-Crosswise Multiplication

1
ones tens hundreds Ones place:
9 7 8 9 7 8 9 7 8 3X8=24; write down 4, remember 2. [4]
| >< >K Tens place:
£ 2 2 s 2 @ 123 24 3x7 + 2x8 = 39; write down 9, remember 3. [94]
thousands ten-thousands
9 7 8 9 7 8 Hundreds place:
3+3X9+2X7+4X8=76; write down, 6, remember 7.
K | [694]
4 2 3 4 2 3
Thousands:

7+2X9+4X7=53; write down 3, remember 5. [3694]

Ten-thousands: 5+4X9=41; write down 41. [413694]

vedic-py package

O Python library for Vedic Maths sutras. This library implements the
vedic maths sutras for performing basic mathematical operations

like addition, subtraction, multiplication, square roots, cube roots
efc.

O Since vedic maths sutras work on individual digits in a number as
opposed to the whole number, they can treat numbers as strings
and hence not run into issues with storage and computations on
very large numbers.

O URL:https://github.com/techmoksha/vedic-py

https://github.com/techmoksha/vedic-py

vedic-py package

I .
0 Two vedic numbers can be multiplied using the * operator of

python. The multiplication is performed using Vertical-
Crosswise sutra of vedic maths

from vedic import VedicNumber

print(VedicNumber(45) * VedicNumber(57))

osBrain package
.,

O osBrain is a general-purpose multi-agent system module written in Python and
developed by OpenSistemas. Agents run independently as system processes
and communicate with each other using message passing.

O In general, osBrain can be used whenever a multi-agent system architecture fits
the application well:
m Autonomy of the agents.
® Local views.
®m Decentralization.

O URL: https: //github.com /opensistemas-hub /osbrain
O Installation: pip install osbrain

https://github.com/opensistemas-hub/osbrain

osBrain package
T,

from osbrain impert run nameserver
from osbrain import run agent
if name == " main_ ':
ystem deployment
run_nameserver()

run_agent('Example")

Log a message
agent.log info('Hello world!")

ns.shutdown()

gajendra@gajendra-virtual-machine: $ python3 hello world.py
Broadcast server running on 0.0.0.0:9091

NS running on 127.0.0.1:12620 (127.0.0.1)

URI = PYRO:Pyro.NameServer@l27.0.0.1:12620

INFO [2018-12-22 02:03:48.383790] (Example): Hello world!

INFO [2018-12-22 02:03:48.427736] (Example): Stopping...

NS shut down.

SPADE package

.
O Smart Python Agent Development Environment

O A multi-agent systems platform written in Python and based on
instant messaging (XMPP).

O Develop agents that can chat both with other agents and humans.
O Agent model based on behaviours

O Tutorial: https://spade-mas.readthedocs.io /en/latest /readme.html

O Source: https://qithub.com /javipalanca/spade /

O Installation: pip install spade

https://spade-mas.readthedocs.io/en/latest/readme.html
https://github.com/javipalanca/spade/

SPADE package

import spade
class DummyAgent(spade.agent.Agent):
def setup(self):
print("Hello World! I'm agent {}".format(str(self.jid)))

dummy

= DummyAgent("agentll@localhost", "gcdl234")
dummy.start()
3

dummy . stop()

Implementation
-5

Choose two plain texts P1 and P2

Implement RSA Algorithm to convert P1 and P2 to cipher texts C1 and C2
respectively.

Multiply plain texts i.e., Product=P1*P2

Multiply both Cipher texts using * operator i.e., CProduct=C1*C2. Note
Computation Time: 16.4404850006 Seconds

Multiple both Cipher texts using vertically-crosswise technique i.e.,
Vproduct=C1*C2. Note Computation Time 15.4647901058 Seconds

Verify that Product=Dec(CProduct) and Product=Dec(VProduct)

gajendra@gajendra-virtual-machine: $ python3 rsafinal.py
First list of random numbers
[811060812127733]

Second list of random numbers
[9880977787844]

N = 134369998998354300089952937559587535776969448542275036274354877139580565294709571734984987344
£5998104982386825687013165417917213166130445936206026962084075736601269743032615380450537800300701
980912882570479072066700433203657421402375450369587116516452822544716714000049076627791406417277543
21849750023

e = 3

Encryption of First list of Random numbers

[533530368874401521529370212066852175941837]

Encryption of Second list of Random Numbers
[964716638859980865302941251768558507584]

Decryption of First list of Random Numbers
[81186812127733]

Decryption of Second list of Random Numbers
[9880977787844]

Output

Product of Two Encrypted Lists
[[514705624198237961577608804362486808467224470024910332042591348171746083611391808]]

Product of Two Decrypted Lists
[[801406704294735853902677652]]

Decryption of Product of Encrypted Lists
[801406704294735853902677652]

Vedic Product of Two Encrypted Lists
514705624190237961577608804362486808467224470024910332042591348171746003611391808

Vedic Product of Two Decrypted Lists
801406704294735853902677652

Conclusion
I

0 Homomorphic Encryption enables computation on untrusted
resource. The Computation time over cipher text can be
reduced by using vertically-crosswise technique.

0 Need to test the computation time with respect to
homomorphic properties of Elgamal, Paillier and ECC
Systems.

O Multi agent system can be used for load balancing

Widescreen Test Pattern (16:9)

Aspect Ratio Test

(Should appear
circular)

A

4x3

\ 4

16x9

